
LIDS-P-2191

PROOF OF CORRECTNESS OF PROPOSED

ATM RETRANSMISSION SCHEME

August, 1993

Jane M. Simmons and Robert G. Gallager

MIT, Laboratory for Information and Decision Systems

Abstract: The CCITT has proposed a poll-based retransmission scheme as part of the Service

Specific Connection Oriented Protocol for ATM systems. The basic scheme consists of the

source periodically sending polls to the destination indicating which frames have been sent, and

the destination responding with a status message indicating which of these frames have not been

received. Many additional features have been included in the scheme in order to reduce the

retransmission delay and prevent unnecessary retransmissions. With the added complexity of

these features, it is not readily apparent whether the scheme generates the necessary

retransmissions. We formally prove that the scheme does eventually generate a retransmission

of any lost frame without producing any unnecessary retransmissions, assuming that certain

reasonable conditions hold. In proving the correctness of the scheme, we also further define

the protocol. We also examine how the protocol can fail if the conditions for proper operation

are not met.

This work was funded by the NSF, DARPA, and ATT Bell Laboratories.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 1993 2. REPORT TYPE

3. DATES COVERED
 00-08-1993 to 00-08-1993

4. TITLE AND SUBTITLE
Proof of Correctness of Proposed ATM Retransmission Scheme

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Massachusetts Institute of Technology,77 Massachusetts
Avenue,Cambridge,MA,02139-4307

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

19

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1. INTRODUCTION

The ATM Adaptation Layer is comprised of two sublayers: the lower portion is referred to

as the 'common part' and the higher portion is referred to as the 'service specific part'[1].

There are several protocols that have been proposed for the common part, e.g., AAL Type 5 is

proposed as a common part protocol for connection oriented traffic.[2] One function of the

common part is to detect corrupt frames. If assured data transfer is desired, then it is the

responsibility of the service specific protocol to ensure that any lost or corrupt frames are

retransmitted. The CCITT has proposed a poll-based retransmission scheme as part of the

Service Specific Connection Oriented Protocol (SSCOP) for ATM.[1] Retransmissions are

performed end-to-end. The unit of retransmission is properly referred to as a Sequenced Data

Protocol Data Unit; for simplicity we will refer to the unit of retransmission as a frame.

The basic scheme consists of the source periodically sending polls to the destination

indicating which frames have been sent, and the destination responding with a status message

indicating which of these frames have not been received. However, many additional features

have been included in the proposed scheme. For example, in order to reduce retransmission

delay, the scheme takes advantage of the fact that frames are expected to travel in sequence in

ATM systems. If the destination receives frame X without having received frame X-1, it

immediately sends a NACK of frame X, rather than waiting for a poll. Also, a major design

goal was to ensure that the scheme does not produce any unnecessary retransmissions. In order

to accomplish this, the source and destination must maintain several variables. With the added

complexity of these features, it is not readily apparent whether the scheme generates the

necessary retransmissions.

Further details of the scheme are provided in Section 2. In Section 3, we formally prove

that the scheme does eventually generate a retransmission of any lost frame without producing

any unnecessary retransmissions, assuming that certain reasonable conditions hold. In proving

the correctness of the scheme, we also further define the protocol. In Section 4, we examine

how the protocol can fail if the conditions for proper operation are not met.

In this paper, we only address the issue of whether the scheme works, not whether the

scheme is appropriate for the ATM environment. For an analysis of poll-based retransmission

schemes in terms of delay and overhead, refer to [3].

2. DESCRIPTION OF PROPOSED RETRANSMISSION SCHEME

First, we provide an overview of the proposed retransmission scheme. For complete

details of the proposed scheme, see [1,4]. In section 2.2, we transform the protocol definition

into algorithmic form. An example is provided in section 2.3 that illustrates many of the details

of the protocol.

1

2.1 Overview of Proposed Scheme

Each data frame in a connection is numbered sequentially modulo 224. Also, each poll

message is numbered sequentially modulo 224, independently of the data frames. The source

maintains the variable SEQ to indicate that all data frames up to but not including SEQ have

been transmitted at least once, and the variable PSEQ to indicate the sequence number of the last

poll message transmitted. After a data frame is transmitted, the frame is stored in a

retransmission buffer, along with the current value of PSEQ. Polls are sent periodically by the

source.

There are two types of status messages sent by the receiver. A solicited STAT is sent in

response to a poll message and provides the status of all frames through SEQ-1, where SEQ is

indicated in the poll message. It also includes the value of PSEQ contained in the incoming poll

message.

The receiver sends an unsolicited STAT whenever it determines that there are frames

missing. An unsolicited STAT only NACKs frames that have not previously been NACKed in

another status message. The one exception to this is that the protocol provides the option for

the receiver to send two identical unsolicited STATs rather than just one.

When the source receives a solicited status message, it retransmits all NACKed frames as

long as the value of PSEQ stored along with the frame in the retransmission buffer is less than

the value of PSEQ indicated in the status message. Essentially the retransmission criterion is:

retransmit any NACKed frames that were sent before the poll that triggered the NACK.

There is a logical variable stored with each transmitted data frame, called RTS, that

indicates whether the frame has ever been retransmitted due to an unsolicited STAT. When the

source receives an unsolicited status message, it retransmits all NACKed frames as long as the

corresponding RTS value is FALSE. No comparisons of PSEQ are done.

2.2 Source and Destination Algorithms

There are several variables that must be maintained by the source and destination, as listed

below.1 In this section, we assume all variables and sequence numbers are ordinary integers,

rather than integers modulo 224.

Source Variables

SEQA = oldest transmitted but unacknowledged frame at source

SEQ = one greater than highest numbered frame transmitted by source

1 The most recent proposal uses different variable names than those used below. The mapping between the
variable names is:
SEQ = VT(S) PSEQ = VT(PS) SEQA = VT(A) PSEQL = VT(PA)-1 SEQR = VR(R) SEQH = VR(H)

2

PSEQ = sequence number of poll most recently sent by source

PSEQL = poll sequence number contained in solicited STAT most recently received by source

RTS = logical variable associated with each frame transmitted by source. It is initialized to

FALSE and set to TRUE if the frame is retransmitted due to an unsolicited STAT

Destination Variables

SEQR = lowest consecutive frame that the destination hasn't correctly received

SEQH = one greater than the highest numbered frame that the destination knows the source has

sent

We also use the following conventions:

PSEQp = PSEQ number sent in a poll

SEQp = SEQ number sent in a poll

PSEQS = PSEQ number contained in a solicited STAT

SEQRs = SEQR number contained in a STAT (either solicited or unsolicited STAT)

Px = PSEQ stamp of frame number X (stored in retransmission buffer)

Algorithm at Source

1. Initialize SEQA, SEQ, PSEQ, and PSEQL to 0. The first transmitted data frame contains

sequence number 0. The first transmitted poll contains poll sequence number 1.

2. Do steps 3 through 8 repeatedly. Steps 5 through 8 are performed whenever the conditions

are met. Steps 3 and 4 are done repeatedly within finite intervals chosen by the source.

3. If SEQ < SEQA + 224 - 1, and a frame is available from the higher layer, assign frame

number SEQ to the frame, and increment SEQ by one (this may not be possible due to the flow

control window). Transmit frame, and store frame in retransmission buffer with current value

of PSEQ, and set the corresponding RTS variable to FALSE.

4. If PSEQ < PSEQL + 224 -1, increment PSEQ by one. Send a poll containing poll number

PSEQ and the current value of SEQ.

5. If a STAT is received with SEQRs > SEQA, increase SEQA to SEQRS.

6. When a solicited STAT is received, set PSEQL to PSEQS.

7. If a NACK of frame number X is received in a solicited STAT containing PSEQS, then

retransmit frame X if Px < PSEQs. If frame X is retransmitted, update Px to current value of

PSEQ.

8. If a NACK of frame number X is received in an unsolicited STAT, retransmit X if the

corresponding RTS variable equals FALSE. If frame X is retransmitted, set PX to current value

of PSEQ, and set RTS to TRUE.

3

Algorithm at Destination

1. Initialize SEQR and SEQH to 0. Do steps 2, 3, and 4 repeatedly.

2. If receive a frame with sequence number X equal to SEQR, accept the frame, and increment

SEQR. Perform the following loop:

While (SEQR equals the sequence number of a frame already in resequencing buffer) {

increment SEQR I
Pass up to the higher layer all frames from X through the new value of SEQR-1 (in proper

sequence). If X > SEQH, update SEQH to X + 1.

3. If receive a frame with sequence number X such that SEQR < X < SEQR + 224 - 2, store the

frame in the resequencing buffer. (The receive window may actually be smaller due to flow

control restrictions.) If X > SEQH, NACK all missing frames between SEQH and X-1,

inclusive (if any), in an unsolicited STAT. Set SEQRS in the STAT to the current value of

SEQR. As an option, two identical unsolicited STATs can be sent. If X > SEQH, update

SEQH to X + 1.

4. If receive a poll with SEQp > SEQH, optionally NACK all missing frames between SEQH

and SEQp - 1, inclusive (if any), in an unsolicited STAT. Set SEQRs in the STAT to the

current value of SEQR. Also, if SEQp > SEQH, update SEQH to SEQp. Regardless of

whether the unsolicited STAT is sent, send a solicited STAT containing PSEQS equal to

PSEQp, containing SEQRS equal to the current value of SEQR, and NACKing all missing

frames with sequence number less than SEQp.

Throughout our discussion, it is assumed that each of the steps in the above algorithms at

the source and destination can be viewed as an indivisible operation i.e., once a given step is

started, no other operations are performed until the entire step is finished. When we refer to

transmissions at the source and destination, we assume the frame or control message is passed

down to a transmit queue at a lower layer, which is served in First In First Out order.

2.3 Example of Operation

An example of the polling scheme operation is shown in Figure 1. The important points

are described below. In the early versions of the proposal, both selective repeat and Go Back N

operation were included, but in the most recent proposal, it appears just selective repeat is

supported. (For a discussion of Go Back N and selective repeat, see [5,6].)

In the example, frames 1 and 2 are delivered successfully. Frame 3 is lost, and Poll 1
generates a solicited STAT that NACKs frame 3. (We assume the receiver chooses not to also
send an unsolicited STAT in response to the poll.) Note that the arrival of the poll also causes

SEQH to be updated to 4 (i.e., due to the poll, the destination knows that all frames through 3

4

have been sent at least once). Frame 4 is lost; frame 5 is received successfully and triggers an

unsolicited STAT that NACKs frame 4.

The PSEQ value stored with frame 3 is 0; thus, solicited STAT I triggers the

retransmission of frame 3 (since 0 < 1). The unsolicited STAT of frame 4 automatically

triggers the retransmission of frame 4 without any PSEQ comparisons being necessary.

Before the retransmissions of frames 3 and 4 are sent, Poll 2 is sent, which generates a

solicited STAT that NACKs both frames 3 and 4. Solicited STAT 2 triggers no retransmissions

since the PSEQ value stored with frames 3 and 4 is now 2. The retransmission of frame 3 is

lost, but the retransmission of frame 4 is successful. Even though the destination receives

frame 4 and not frame 3, it does not send an unsolicited STAT, since SEQH is 6. Finally, Poll

3 generates solicited STAT 3 that NACKs frame 3. This triggers the successful retransmission

of frame 3.

SOURCE RECEIVER

PSEQ Value Frame Number SEQH

0 1 _-- 2

0 2 3

0 3

1 Poll 1 - -sSTAT 1 (NACKs 3) 4

i1 4

~1 5 - _ G e l! ~uSTAT (NACKs 4) 6
2 Poll 1 2 Poll 2 sSTAT 2 (NACKs 3,4)

2 3

2 4

2 6 7

3 Poll 3 sSTAT 3 (NACKs 3)

3 7

3 3

Figure 1 Operation of ATM retransmission scheme.

5

3. PROOF OF PROPER OPERATION

As can be seen from the previous section, the proposed ATM retransmission algorithm

requires the maintenance of several variables, and involves many special cases. The goal of this

section is to prove the correctness of the protocol. We must show that the source can continue

forever to accept frames for transmission from the higher layer, and that all frames are

eventually delivered in proper sequence at the destination. We also need to show that the claim

of no unnecessary retransmissions is true.

3.1 Conditions of Normal Operation

It is easy to come up with special circumstances where the proposed ATM retransmission

scheme does not work correctly. Thus, we first must define the conditions of "normal

operation". Under these conditions, we can prove the correctness of the protocol. The

conditions of normal operation are:

1) Frames (data or control) travel in order on the links.

2) Undetected errors do not occur.

3) State information at the source and receiver is not lost.

4) The connection does not go down.

5) There is some q > 0 such that each frame (data or control) is received error-free with

probability at least q.

6) All transmission and propagation delays are finite.

7) If polls are numbered modulo 224, then no more than 224-2 consecutive poll/status

message combinations are lost (i.e., one out of every 224-1 consecutive polls arrives

successfully at the destination, and the corresponding status message arrives

successfully at the source).

8) If frames are numbered modulo 224, and the oldest unacknowledged frame at the

source is SEQA, then the source does not transmit past frame SEQA + 224 - 2.

(Due to the flow control window, the upper limit of the send window may be much

smaller than this.)

9) If polls are numbered modulo 224, and the solicited STAT most recently received by

the source contained a poll sequence number of PSEQL, then the source does not

transmit past poll number PSEQL + 224 - 1.

The first seven conditions deal with properties of the network that must hold to guarantee

proper operation. The last two conditions should really be specified as part of the protocol.

Also, we make the obvious assumption that a frame cannot be received before it is sent. We

also assume that in the initial state of the system, there are no frames on any of the links.

6

Below, we prove the proper operation of the protocol given the above conditions. We first

prove the protocol works if all sequence numbers are integers that can increase without bound.

In Section 3.5, we consider the case where frame sequence numbers and poll sequence

numbers are integers modulo 224. The methodology of the proof closely follows that used in

[6] to prove the correctness of general Go Back N schemes. To prove the correctness of the

protocol, we must show safety and liveness.

3.2 Safety Condition

The algorithm is safe if it never delivers an out-of-sequence frame to the higher layer at the

destination. From step 2 of the algorithm at the destination, we see that frames must be passed

up in sequence, so that the algorithm is safe.

3.3 Liveness Condition

The algorithm is live if the source can continue forever to accept packets from the higher

layer, and the destination continues to deliver them to the higher layer.

Let SEQA(t), SEQ(t), PSEQ(t), SEQR(t), and SEQH(t) represent the value of these five

variables at time t. From the algorithm statement, it can be seen that all five must be non-

decreasing in t. Define a successful poll as a poll that gets to the destination error-free, and

whose corresponding solicited STAT gets to the source error-free.

Consider any transmitted frame with sequence number X. Refer to Figure 2. Let tTi equal

the transmission time of the ith copy of frame X. Polls are sent periodically within finite

intervals; due to condition 5 above, some poll sent after time tTi must be successful. Let tpi be

the transmission time of the first successful poll sent after time tTi. Let tRi be the time this poll

arrives at the destination. Let tsi equal the time the STAT corresponding to this poll arrives at

the source. Thus, tTi < tpi < tRi < tsi. Since we assume finite delays, and because of

condition 5, tRi, and tsi are finite.

Let Px(t) represent the PSEQ stamp of frame X at time t. Then

Px(t) = PSEQ(tTi) for tTi < t < tT(i+l) (1)

where we take tT(i+l) to be o if X is not transmitted for the (i+l)th time.

Also, since SEQ is one greater than any transmitted frame:

SEQ(t) > X for t > tTi (2)

7

tTi tPi tsi

May or may not
be received

tRi
Figure 2 Copy i of frame X is transmitted at time tTi. Due to condition 5, some poll that it is transmitted
after time tTi will be successful. We assume such a poll is sent at time tpi and received at the destination at time
tRi. The corresponding solicited status message is received at the source at time tsi.

We want to show that if the ith copy of frame X has been transmitted, either this copy will

be received successfully at the destination, or copy i+1 of frame X will be transmitted. (In the

next section, we show that both events do not occur.)

The successful poll sent at time tpi contains PSEQp = PSEQ(tpi-) + 1 and SEQp =

SEQ(tpi-), where tpi- represents the start of the poll transmission operation, before PSEQ is

updated. Since tpi- > tTi, from (2), we have:

SEQp > X (3)

Also, the nondecreasing property of PSEQ(t) implies that:

PSEQp > PSEQ(tTi) (4)

At time tRi, one of the following 2 conditions must hold:

a) Frame X has been received by the destination. Since tRi is finite, this implies frame X

has been received in finite time.

b) Frame X has not been received by the destination. Since the poll was sent after frame

X, and it arrives before frame X, it means frame X is lost (since frames travel in order). The

poll triggers a solicited STAT NACKing frame X since, as shown above, SEQp > X. The

solicited STAT, with PSEQS equal to PSEQp, arrives at the source at time tsi. It is possible an

unsolicited STAT NACKing copy i of frame X has already been received by the source prior to

tsi, in which case copy i+l may already have been sent. If not, then, from equation (1),

Px(tsi) = PSEQ(tTi). Combining this with equation (4) yields:
Px(tsi) = PSEQ(tTi) < PSEQp = PSEQs

Thus, since Px(tsi) < PSEQS, the condition of step 7 in the algorithm at the source is satisfied,

and frame X is retransmitted.

8

We conclude that, given copy i of frame X has been sent, either copy i will be successfully

received, or copy i+l will be transmitted. From condition 5, we assume that frames are

successfully received with probability greater than some non-zero q. Thus, eventually frame X

will be received successfully. (Note that even without unsolicited STATs, frame X is

eventually received successfully; only solicited STATs are needed to satisfy liveness.)

Now, let Y be the value of SEQA at any time t. We know that all frames before Y have

been received at the destination and have been ACKed; thus, frame Y must fall within the

receive window. From what was shown above, frame Y will eventually be received at the

destination in finite time. At the time Y is accepted at the destination, SEQR will be incremented

beyond Y. The destination will be able to deliver to the higher layer all frames through at least

frame Y. The next successful poll sent after the successful transmission of Y will generate a

solicited STAT with SEQRS > Y. Thus, at the time this STAT arrives at the source, SEQA

will be incremented beyond Y.

We conclude that the value of SEQA is always incremented after some finite time

(assuming there is data to send). This allows the higher layer at the source to continue to

submit frames.

We have shown that the algorithm is live: the higher layer at the source can continue to

submit frames, and the destination will continue to deliver them. Next, we need to show the

algorithm does not produce any unnecessary retransmissions.

3.4 No Unnecessary Retransmissions

We define an unnecessary retransmission as occurring when copy j of a frame is sent even

though copy i, for some i < j, is not lost. If copy i+1 is not sent unless copy i is lost, then we

know that copy j, for all j > i, will not be sent unless copy i is lost. Thus, we just need to

consider copies i and i+1.

In the discussion below, we examine whether copy i+l of an arbitrary frame, say frame X,

could ever be unnecessarily sent. In order for copy i+l to be unnecessary it must be true that

copy i of frame X does arrive (and is accepted) at the destination.

There are 3 possible ways a NACK of frame X can be generated (for simplicity, SEQH is

used rather than SEQH(t)):

1) Frame Y arrives at the destination, and at the time of its arrival X has not arrived and been
accepted, and the following holds: Y > X > SEQH. An unsolicited NACK of frame X is sent

and SEQH is updated to Y+ 1.

2) A poll arrives at the destination, and at the time of its arrival X has not arrived and been

accepted, and the following holds: SEQp > X > SEQH. An unsolicited NACK of frame X is

9

optionally sent. A solicited NACK of frame X must be sent. After the NACKs are sent, SEQH

is updated to SEQp.

3) A poll arrives at the destination, and at the time of its arrival X has not arrived and been

accepted, and the following holds: SEQp > X and SEQH > X. A solicited NACK of frame X

is sent. If SEQp > SEQH, then after the NACK is sent, SEQH is updated to SEQp.

First, consider the case where i = 1. Assume copy 1 of frame X arrives (and is accepted) at

the destination. Copy 1 of frame X must be sent before any copy of frame Y, where Y > X,

and must be sent before a poll with SEQp, where SEQp > X. Given that frames travel in

order, such a frame Y or such a poll cannot arrive before frame X. Thus, the conditions in the

three procedures above are not satisfied; copy 1 of frame X will not be NACKed, so no further

copies of frame X will be sent.

Next, consider the case where i > 1. Since frame X has been sent more than once, and

since frames are only retransmitted in response to NACKs, it must be true that frame X was

NACKed at least once. From statements 1, 2, and 3 above, it must be true that after frame X is

NACKed, SEQH is updated to a value greater than X. (In statement 3, SEQH is already greater

than X.) SEQH is nondecreasing. Thus, after frame X has been NACKed once, statements 1

and 2 above can never be satisfied, since they require X > SEQH (i.e., an unsolicited STAT can

only NACK copy 1 of a frame.) (For now, ignore the case where two identical unsolicited

STATs are sent.)

Thus, we only need to consider statement 3 above. Let ti be the time that copy i of frame X

is transmitted. Let PXi be the PSEQ stamp associated with copy i of frame X. Then

Pxi = PSEQ(ti). We assume that copy i is received and accepted by the destination. We
consider whether any poll can trigger an unnecessary transmission of copy i+l of frame X.

First, consider a poll sent before ti. Its poll sequence number, PSEQp, satisfies

PSEQp < PSEQ(ti). Thus, the corresponding solicited STAT would contain

PSEQs < PSEQ(ti) = Pxi. Thus, copy i+l of frame X would not be transmitted since Pxi is

not less than PSEQs.

Next, consider a poll sent after ti. If copy i of frame X gets to the destination, then it must

arrive before such a poll (since frames travel in sequence). Thus, this poll will not NACK

frame X.

Thus, a poll will not trigger an unnecessary retransmission of frame X.

The last case we need to consider is where copy 1 of frame X is lost, and frame X is

retransmitted due to an unsolicited STAT. The destination has the option of sending two

identical unsolicited STATs. However, if frame X is retransmitted due to an unsolicited STAT,

10

the variable RTSx is set to TRUE, so that all future NACKs of frame X contained in unsolicited

STATs are ignored. Thus, if both unsolicited STATs arrive at the source, the second one will

be ignored.

Overall, we see that given copy i of frame X is received, copy i+l will not be sent. Thus,

no unnecessary retransmissions are produced.

3.5 Sequence Numbers with Modulus

In the sections above, we showed that the protocol works correctly if sequence numbers

can increase without bound. In this section, we show that the protocol continues to work if

frame sequence numbers and poll sequence numbers are treated modulo 224. We must check

that the acceptance policy, the NACK procedure, and retransmission procedure are unaffected if

the modulus is used.

3.5.1 Received Frame Sequence Numbers

First, continue to assume that sequence numbers are integers increasing without bound.

Consider the successful transmission of an arbitrary frame sent by the source. Assume it is

transmitted at time tl and received at the destination at time t 2. Obviously, t2 2 tl. The

sequence number of the frame, say X, must lie in the source's send window at time tl. Thus:

SEQA(tl) < X < SEQA(tl) + 224 -2 (5)

From step 5 of the algorithm at the source, it must be true that SEQA(t) < SEQR(t) for all t.

(If SEQA(t) > SEQR(t), it would mean the source received an ACK for a frame that was not

received by the destination.) Thus, for any tl < t2,

SEQA(tl) < SEQR(tl) < SEQR(t2) (6)

We showed above that the protocol does not produce unnecessary retransmissions. Thus,

the transmission of frame X must be necessary. Thus, SEQR(t 2) < X. (If SEQR(t 2) were

greater than X, it would mean frame X has already been received by time t 2.) Combining this

with equations (5) and (6), yields:

SEQA(tl) < SEQR(t2) < X < SEQA(tl) + 224 -2 (7)

The destination accepts frames in the range from SEQR(t 2) to SEQR(t2) + 224 - 2. (The

window of acceptance may actually be smaller for flow control purposes.) From (7) we have:

0 < (X - SEQR(t 2)) < 224 -2. Thus, X falling in the range SEQR(t 2) to SEQR(t 2) + 224 - 2 is

equivalent to X mod 224 falling in the range SEQR(t 2) mod 224 to (SEQR(t 2) + 224 - 2) mod

224. Thus, treating the sequence numbers as integers modulo 224 does not affect the acceptance

policy at the destination.

Note that we need to define what it means to "fall in the range" of A and B, where A and B

are numbers modulo 224. One can envision the numbers from 0 to 224-1 on a circle, increasing

11

clockwise. Then for any two numbers A and B, we define the region that extends clockwise

from A to B as representing the numbers that fall between A and B.

The property of no unnecessary retransmissions is important in the above argument. In

general selective repeat systems, where unnecessary retransmissions can occur, if the modulus

is M, then ambiguity can occur if the source transmits past SEQA+M/2 - 1 (as opposed to

SEQA + M - 2 for the ATM scheme).[6]

3.5.2 Generating Solicited Status Messages

Again, assume increasing integers are used for sequence numbers. Assume a poll is

transmitted at time tl, and arrives at the destination at time t 2. Obviously, tl < t 2. Assume the

poll contains SEQp, where SEQp = SEQ(tl). Thus, at time tl, all frames through SEQp - 1

have been transmitted. Due to the restriction on the send window, we know that:

SEQp - 1 < SEQA(tl) + 224 -2 (8)

Since SEQ(t) > SEQA(t) for all t, we have:

SEQA(tl) < SEQ(tl) = SEQp < SEQA(tl) + 224 -1 (9)

In equation (6), we showed SEQA(tl) < SEQR(t 2) for any tl < t 2. The value of SEQR(t2)

indicates that the source must have sent the frame with sequence number SEQR(t 2) -1 at some

time prior to tl, say at time to. (If the frame were sent after tl, it could not have arrived prior to

the poll that was sent at tl.) Using the restriction on the send window at the source,

SEQR(t 2) -1 < SEQA(to) + 224 -2. Since SEQA(t) is non-decreasing in t, we arrive at:

SEQA(tl) < SEQR(t2) < SEQA(tl) + 224 -1 (10)

We have shown that both SEQp and SEQR(t 2) lie between SEQA(tl) and

SEQA(tl) + 224 - 1. A poll arriving at time t2 generates NACKs of frames between

SEQR(t 2) and SEQp - 1, inclusive. Thus, sequence numbers can be treated modulo 224

without causing ambiguity with NACKing frames in solicited STATs.

3.5.3 Generating Unsolicited Status Messages

Again, assume increasing integers are used for sequence numbers. Unsolicited STATs can

be generated by the arrival of a frame or a poll. An unsolicited STAT is always sent if a frame

with sequence number X arrives at time t before a frame with sequence number between

SEQH(t) and X-1, inclusive (where SEQH(t) is the value of SEQH before it is updated due to

the arrival at time t). An unsolicited STAT is optionally sent if a poll containing SEQp arrives at

time t before a frame with sequence number between SEQH(t) and SEQp -1, inclusive. Let tl

be the transmission time at the source of the frame or poll that generates the unsolicited STAT,

and let t2 be the arrival time of the frame or poll at the destination.

12

From the definition of the protocol, it must be true that SEQR(t) < SEQH(t) for all t. Thus,

using equation (6), we know SEQA(tl) < SEQR(t2) < SEQH(t 2). The value of SEQH(t 2)

indicates that the source must have sent the frame with sequence number SEQH(t2) -1 at some

time prior to tl, say at time to. Using the restriction on the send window at the source,

SEQH(t2) -1 < SEQA(to) + 224 -2. Since SEQA(t) is non-decreasing in t, we arrive at:

SEQA(tl) < SEQH(t2) < SEQA(tl) + 224 -1 (11)

From the restriction on the send window, we know that if frame X is sent at time tl, then

SEQA(tl) < X < SEQA(tl) + 224 -2. Or, if a poll with SEQp is sent at time tl, then

SEQA(tl) < SEQp -1 < SEQA(tl) + 224 -2. Thus, using the rule for generating NACKs,

any frame Y NACKed in an unsolicited STAT satisfies:

SEQA(tl) < SEQH(t2) < Y < SEQA(tl) + 224 -2 (12)

Therefore, sequence numbers can be treated modulo 224 without causing ambiguity with

frames NACKed by unsolicited STATs.

3.5.4 Receiving Status Messages at Source

Again, assume increasing integers are used for sequence numbers. Let tl be the time a

STAT (either solicited or unsolicited) is sent by the destination, and let t2 be the time the STAT

arrives at the source. Let SEQRS be the value of SEQR contained in the STAT. Let SEQA(t 2)

be the value of SEQA at the time the STAT arrives (i.e., before SEQA is updated to SEQRs).

Thus, all frames through SEQRS - 1 are being ACKed by this STAT.

A STAT ACKing frame SEQRs cannot be received before a STAT that ACKs only through

SEQRS - 1 (since SEQR(t) is non-decreasing in t and frames travel in sequence). Thus,

SEQA(t2) < SEQRs. (If SEQA(t2) were greater than SEQRS, it would mean that SEQRs had

been ACKed by time t2 .) Also, a STAT cannot ACK a frame that has not been sent. Due to the

restriction on the send window, SEQRs -1 < SEQA(t2) + 224 - 2. Thus:

SEQA(t2) < SEQRs < SEQA(t2) + 224 - 1 (13)

Thus, SEQA can be updated to SEQRs without ambiguity.

Now consider any NACKs contained in the STATs, and consider the sequence numbers as

ordinary integers again. Let Y equal the sequence number of a NACKed frame in the STAT.

By definition of the protocol, we know Y > SEQRs.

First, consider the case where the STAT is an unsolicited STAT triggered by the arrival at

the destination of a frame with sequence number X. By definition of the protocol, Y < X. We

assumed the STAT is generated at time tl; thus, we know that frame X has been sent by the

source prior to tl, say at time to. Due to the restriction on the send window, we know that: X
< SEQA(to) + 224 - 2. Thus, using the fact that SEQA(t) is non-decreasing in t:

Y < X < SEQA(to) + 224 - 2 < SEQA(t 2) + 224- 2 (14)

13

Combining this with equation (13) and the fact that Y > SEQRS yields:

SEQA(t2) < Y < SEQA(t2) + 224 - 2 (15)

Next, consider the case where the STAT is triggered by a poll containing SEQp (the STAT

can be solicited or unsolicited). By definition of the protocol, Y < SEQp. The STAT is

generated at time tl; thus, we know that a poll containing SEQp has been sent by the source

prior to tl. Thus, we also know that frame SEQp -1 must have been sent by the source before

tl, say at time to. Using the same argument as above again yields:

SEQA(t2) < Y < SEQA(t2) + 224 - 2

Thus, at the arrival time t2 of any STAT, SEQRS and any NACK contained in the STAT

fall between SEQA(t2) and SEQA(t2) + 224 - 2.

Combining the last four sections, we see that all frame sequence numbers and SEQA, SEQ,

SEQR, and SEQH can be kept modulo 224 without affecting the operation of the protocol.

3.5.5 Poll Sequence Numbers

First consider poll sequence numbers as ordinary increasing integers. Let tl be the time a

poll is transmitted by the source. Assume the poll contains PSEQp. Let t2 be the time the

corresponding solicited STAT gets back to the source (if it does). The STAT carries PSEQS

equal to PSEQp. PSEQL(t) represents the poll sequence number contained in the last received

solicited STAT as a function of time. PSEQL(t) is non-decreasing in t. Since the STAT

carrying sequence number PSEQS does not arrive until time t2, and since frames travel in

sequence, PSEQL(t2) < PSEQS (we assume PSEQL(t2) represents the value of PSEQL at the

arrival time of the STAT, before it is updated to PSEQS). At time tl, PSEQp must fall within

the send window for polls. Thus, PSEQp < PSEQL(tl) + 224 -1. Since PSEQL(t) is non-

decreasing in t, PSEQp < PSEQL(t2) + 224 -1. Thus, overall, we have:

PSEQL(t 2) < PSEQs = PSEQp < PSEQL(t 2) + 224 -1 (16)

Thus, any solicited STAT that arrives at the source at time t contains a PSEQ value that is within

the range from PSEQL(t)+ 1 to PSEQL(t) + 224 -1, inclusive.

Now, let's consider the PSEQ stamps in the retransmission buffer. Consider any time t 2

when a solicited STAT arrives at the source. Obviously, the poll with PSEQp equal to PSEQs

was sent before time t 2. Thus, PSEQ(t 2) 2 PSEQp = PSEQS.

At time t 2, the source examines each frame in the retransmission buffer:

* if a frame is ACKed by the STAT, the source removes it from the buffer

* if a frame is NACKed by the STAT and it is retransmitted then the PSEQ stamp of the

frame is updated to PSEQ(t2).

* if a frame is NACKed by the STAT but it is not retransmitted, then the PSEQ stamp of

the frame must have been greater than or equal to PSEQS.

14

* if a frame is in the buffer but not ACKed or NACKed by the STAT, then it must have

been sent after the poll carrying PSEQp. Thus, the PSEQ stamp must be greater than or

equal to PSEQs.

After the source finishes servicing the STAT, PSEQL is updated to PSEQs. From the

above discussion we see that all frames in the retransmission buffer at this time will have a

stamp greater than or equal to PSEQS. Thus, due to the restriction on the poll send window,

after the STAT is serviced, all PSEQ stamps in the retransmission buffer lie between PSEQL

and PSEQL+ 224-1, inclusive.

Thus, the poll sequence numbers can be treated modulo 224 without ambiguity problems.

3.6 Out-of-Sequence Retransmissions

From the discussion above, it would seem that for any two frames, X and X+1, copy i of

frame X+1 is never sent before copy i of frame X. However, this is not true even if the

conditions stated in Section 2 hold. Consider the following example, which is depicted in

Figure 3. Assume the destination sends a solicited STAT NACKing frame X, and later sends

an unsolicited STAT NACKing frame X+l. The unsolicited STAT will not NACK frame X

since unsolicited STATs can only NACK frames that have not been NACKed previously.

Assume the solicited STAT is lost. When the unsolicited STAT arrives, frames X+1 will be

retransmitted before frame X is retransmitted. The protocol still functions properly as shown

by our proof (e.g., this scenario does not produce unnecessary retransmissions), but it is a

peculiar feature. It arises because unsolicited status messages do not contain the full status of

the receiver.

4. POTENTIAL PROBLEMS

In the previous section, we examined the proposed ATM retransmission scheme under

normal operating conditions. Here, we consider two of the problems that can arise if some of

the conditions enumerated in Section 2 do not hold. For a more detailed description of potential

problems, see [7].

4.1 Out-of-Sequence Traffic

There are many scenarios where frames that arrive at the destination out-of-sequence result

in unnecessary retransmissions. For example, assume copy 1 of frame X+1 is transmitted after

copy 1 of frame X, but arrives at the destination before it. An unsolicited STAT will be sent

NACKing frame X, and frame X will be unnecessarily retransmitted (see Figure 4).

15

Source Receiver

Frame X

POLL

Frame X+ 1
sSTAT NACK X

Frame X+2

uSTAT NACK X+1

Frame X+ 1

POLL

sSTAT NACK X
Frame X

Figure 3 An unsolicited STAT NACKing frame X+1 arrives at the source before a solicited STAT NACKing
frame X. Thus the second copy of frame X+1 is sent before the second copy of frame X.

Source Receiver

Frame X

Frame X+ 1

uSTAT NACK X

Frame X

Figure 4 Frame X+1 travels out of sequence, causing frame X to be unnecessarily retransmitted.

Unnecessary retransmissions may lead to serious failures of the protocol. In Section 3,

where we proved that the retransmission protocol works properly, it was assumed that

unnecessary retransmissions do not occur. With this assumption, the destination was

guaranteed not to receive frames prior to SEQR, since SEQR indicates the destination has

16

received all frames through SEQR- 1. Without this assumption, the protocol will likely fail, as

is demonstrated in the following example.

Assume SEQA equals 0 and SEQ equals 100. Assume frames 0 through 50 have been

received by the destination. Thus, SEQR and SEQH equal 51. Next, assume frame number 5

is retransmitted unnecessarily. This extra copy of frame 5 will be stored in the resequencing

buffer at the destination, and will be treated as frame 5 in the 'next cycle' of 224 frames. Thus,

an incorrect frame will be passed up to the higher layer at the destination. Also, when frame 5

arrives at the destination, the receiver will interpret this as being a frame 'greater than' SEQH.

Thus, it will send an unsolicited STAT NACKing frames 'between' 51 and 4, inclusive, and it

will set SEQH to 5. This erroneous NACK could result in more unnecessary retransmissions

(although if the source realizes that the status message does not make sense, it would ignore it).

The value of SEQH will be incorrect so that the unsolicited STAT mechanism will be corrupt.

4.2 Consecutive Lost Polls

Condition 7 in Section 2 stated that no more than 224-2 consecutive poll/status message

combinations are lost. If this condition does not hold, and the source adheres to condition 9,

then the source would be unable to send any more polls. The source may be able to partially

rely on unsolicited STATs for NACKs. However, if the last frames of a connection are lost, or

if an unsolicited STAT is lost, then some frames will never be retransmitted. Or, if 224-1

consecutive frames are successfully transmitted, the destination will not be able to ACK these

frames due to the lack of polls. Due to the restriction of condition 8, the source will be unable

to transmit any more frames. The protocol will be deadlocked.

To deal with this situation, the proposed scheme includes a variable Timer_NO-

RESPONSE. If this timer expires without the source receiving a solicited STAT, the

connection is terminated.

5. CONCLUSIONS

We have proved that under reasonable conditions, the proposed ATM retransmission

scheme will generate retransmissions of lost frames without producing unnecessary

retransmissions. It satisfies the conditions of both safety and liveness. The operation of the

protocol relies on the fact that data is expected to travel in sequence in ATM; if frames do travel

out-of-sequence, the retransmission protocol will likely fail.

17

References

[1] CCITT Study Group XI Document DT/11/3-28, "Service specific connection oriented
(SSCOP) specification," May 23, 1993.

[2] CCITT Recommendation 1.363, "B-ISDN ATM Adaptation Layer (AAL) Specification,
Geneva, 1992.

[3] Simmons, J., "Performance analysis of poll-based retransmission schemes", submitted to
IEEE/ACM Transactions on Networking, 1993.

[4] CCITT Study Group XI Temporary Document XI/2-24, "Results of September 1992 XI/2
discussions on Q.SAAL," Geneva, September, 1992.

[5] Schwartz, M., Telecommunication Networks, Addison-Wesley Publishing Co., Reading,
MA, 1987.

[6] Bertsekas, D. and Gallager, R., Data Networks, Second Edition, Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1992.

[7] Simmons, J., End-to-End Reliable Communication in Data Networks, PhD Thesis, MIT,
August, 1993.

18

